
CARBOHYDRATE CHEMISTRY

BY

DR. SHUZAN ALI MOHAMMED ALI ASSIST PROF. OF MEDICAL BIOCHEMISTRY & MOLECULAR BIOLOGY

2021

https://drive.google.com/file/d/1E69xNaLDaaT6Ad8Txj2VUmMV2-pLJhO8/view?usp=sharing

Carbohydrates (C_nH_{2n}O_n) (CH₂O)_n

- <u>Definition: Polyhydroxy-aldhyde</u> or <u>-ketones</u> & compounds that produce them on hydrolysis
- Importance:
- 1. Energy
- 2. Synthesize biological compounds (Fatty a & glucogenic aa)
- 3. Enter in many compounds e.g. Ribose in nucleoprotein, galactose in certain fats & lactose of milk.
- 4. Cellulose can function as structural units within the cell.
- 5. Stored (starch in plants & glycogen in mammalian tissues)

Classification of CHO

(number of sugar units)

- 1. Monosaccharides (1 sugar unit).
- 2. Disaccharides (2 sugar units).
- 3. Oligosaccharides (3 10 sugar units).
- 4. Polysaccharides (> 10 sugar units)...

Classification and Nomenclature

Carbohydrates

1 monosaccharide unit

2 units

3-10 units

>10 units

Monosaccharides

Disaccharides

Oligosaccharides

Polysaccharides

Functional group

Number of carbon atoms Maltose

Lactose

Trisaccharide Tetrasaccharide Homopolysaccharide Hetropolysaccharide

Aldoses e.g Glucose Trioses

Sucrose

Raffinose

Stachyose

Starch

Hyaluronic acid

Dextrin

Heparin

Glycogen

Chondroitin sulfate

Cellulose

Dermatan Sulfate

Inulin

Keratan Sulfate

Ketoses e.g Fructose Pentoses

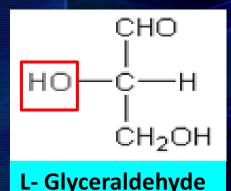
Tetroses

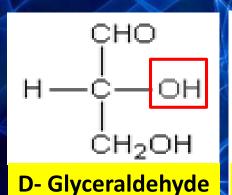
Hexoses

Heptoses

Monosaccharides

Definition:


The simplest sugars (cannot be hydrolyzed to simpler ones)


- Classification:
 - 1. Number of carbon atoms
 - 2. The active group

n. of Carbon	Aldo-sugars	Keto-sugars
Trioses (3 C)	Glycerose	Dihydroxy acetone
	(glyceraldehyde)	
Tetroses (4 C)	Erythrose	Eryth <u>ulose</u>
Pentoses (5 C)	Rib <u>ose</u>	Rib <u>ulose</u>
Hexoses (6 C)	Gluc <u>ose</u>	Fruct <u>ose</u>

* Trioses

D & L sugars → absolute configuration Not the direction of rotation

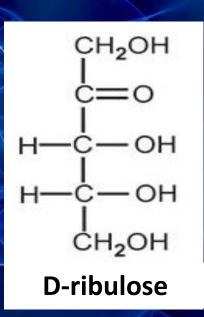
OH of <u>subterminal</u> <u>carbon</u>

Right → D

N.B: primary alcoholic group

secondary alcoholic group

aldehyde group


ketone group

	Aldoses	Ketoses
Trioses	ÇHO	CH₂OH
	H—C—OH CH ₂ OH	c=0
	ĊH₂OH	CH ₂ OH
	D- Glyceraldehyde	Dihydroxyacetone
Importance	 It is the simplest aldose and the mother compound of any aldose. 	 It is the simplest ketose and the mother compound of any
	2. Glyceraldehyde 3-phosphate is intermediate in	ketose.
	hexose monophosphate shunt (a minor pathway of glucose oxidation). (HMP shunt)	
	Also 1. Glyceraldehyde 3-phosphate and dihydroxyacetone phosphate are intermediates in glycolysis (major pathway of glucose oxidation). 2. Both are precusors of glycerol important for lipid synthesis.	
<u>Tetroses</u>	Erythrose	Erythrulose
Importance	Erythrose 4-phosphate is intermediate in hexose monophosphate shunt (HMP shunt)	

* Pentoses

H _ C _ O H C H₂O H D-ribose

H—C—H H—C—OH H—C—OH CH₂OH

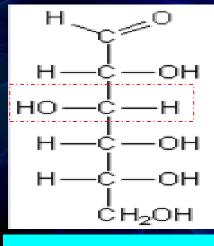
Functions:

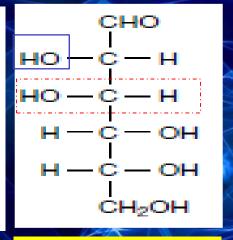
1. In RNA & DNA

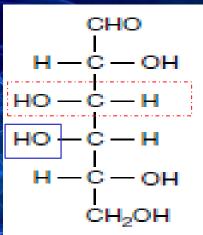
- 2. In high energy phosphate nucleotides (eg. ATP, GTP)
- 3. In Coenzymes (NAD, NADP & flavoproteins)
- 4. Intermediates in metabolism (ribose-P & ribulose-P)
- 5. Ribose 5-P, ribulose 5-P & D-xylulose 5-P are intermediates of HMP shunt
 - 6. L-xylulose is intermediate of uronic acid pathway

* Hexoses

HO-C-H
HO-C-H
HO-C-H
CH2OH


* D-glucose "grape sugar":


- **D** Glucose
- L Glucose


- Called dextrose (dextrorotatory) "d"
- The main sugar in blood (70-110 mg/dl) & main tissue sugar
- A major source of energy
- Enter in di- & polysaccharides
- In liver and other tissues, it is converted to all carbohydrates in the body (glycogen – galactose – ribose – fructose)

* Hexoses

D- Glucose

D- Mannose

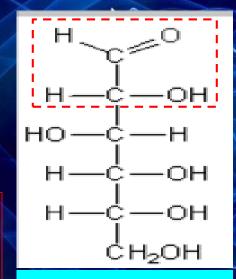
D- Galactose

* D-galactose:

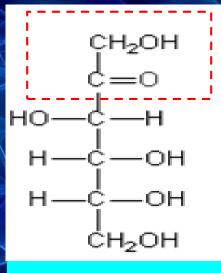
Synthesized in the <u>lactating</u> mammary gland

Converted in the liver to glucose

Enter in glycolipids found in the central nervous system

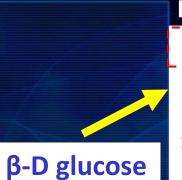

* D-mannose:

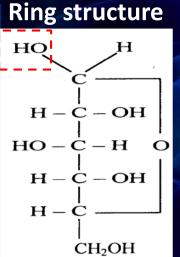
Constituent of prosthetic polysaccharide of albumin, globulin & mucoids

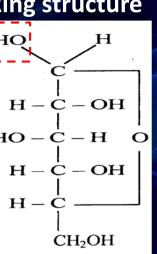


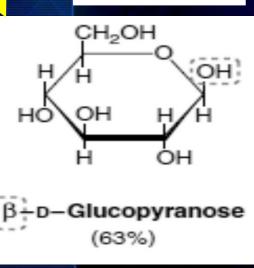
* Hexoses

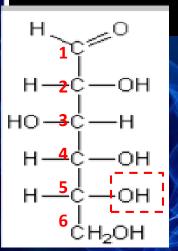
- * Fructose: Called levulose (levorotatory) "I"
- The main semen sugar
- Much sweeter than glucose
- Enter in sucrose formation
- In liver, it is converted to glucose

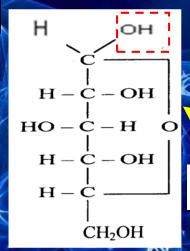



D- Glucose

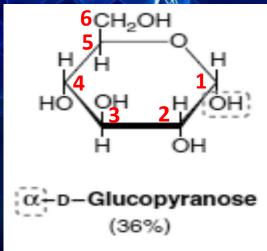



D- Fructose



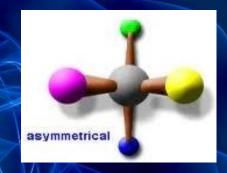


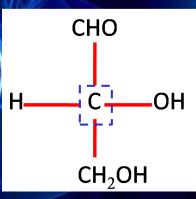
Haworth Formula


Straight chain

Ring structure

α-D glucose

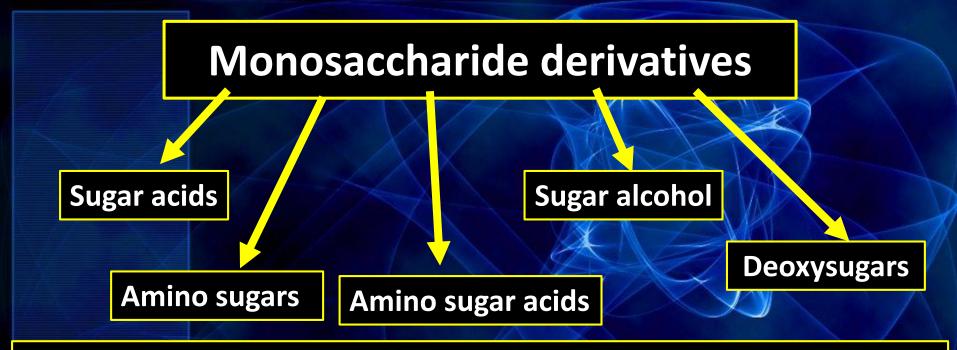

Haworth Formula



Forms of Monosaccharide Structure (Straight - Ring - Haworth)

* An asymmetric carbon atom

- It is a carbon atom to which 4 different atoms or groups of atoms are attached.
- Optical activity is given by any compounds that has asymmetrical carbon atom.
- Optically active compound rotate plane polarized light (PPL) to right (d) or to left (l).
- e.g. glucose is dextrorotatory "d"
 fructose is levorotatory "l"

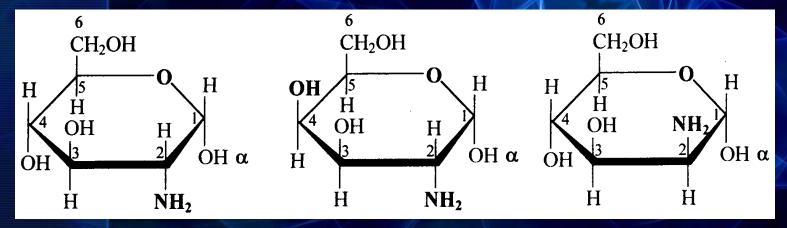


Differences between glucose and fructose

Differences	Glucose	Fructose
Nature	Aldo-hexose	Keto-hexose
Optical activity	Dextrorotatory = (+) or (d)	Levorotatory = (-) or (I)
Another name	Dextrose	Levulose
Ketose test (heating with HCI)	No change	Red brown color
Distribution	Mainly in blood	Mainly in semen
Function	Major source of energy in body	Major source of energy in semen

A. Sugar acids:

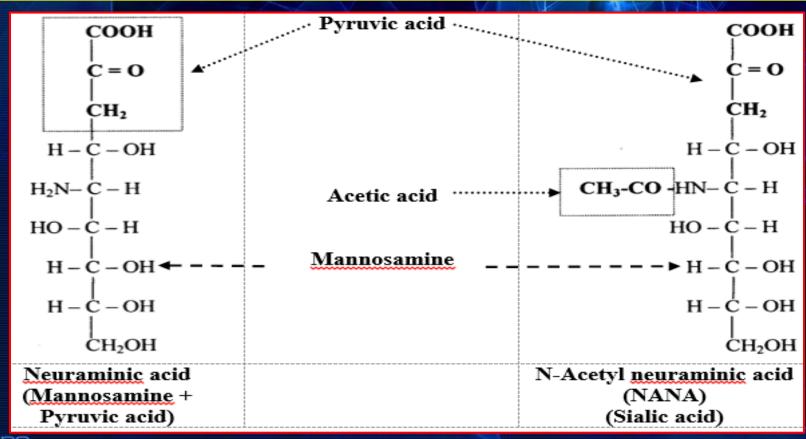
- Aldonic acids produced by oxidation of active carbonyl group (e.g. gluconic acid)
- Uronic acid produced by oxidation of last carbon (e.g. glucuronic a)
- Aldaric acids: dicarboxylic acids (oxidation of both active carbonyl group and last carbon) (e.g. glucaric acid)



	H-Ç=O	соон	H-¢=o	соон	
-	н-с-он	н-с-он	н-с-он	н-с-он	
	но-с-н	но-с-н	но-с-н	но-с-н	
	н-с-он	н-с-он	н-с-он	н-с-он	
	H-C-OH	н-с-он	н-с-он	н-с-он	
	l CH₂·OH	CH ₂ ·OH	соон	СООН	
Ä	Glucose	Gluconic acid	Glucuronic acid	Saccharic acid (Glucaric acid)	
	Cidooc	Olucollic acid		(Glacaric acia)	
Importance Glucose oxidase		Glucose oxidase	UDP-glucose → <u>UDP-glucuronic acid</u> in the liver by		
reaction is used for		reaction is used for	the <u>uronic acid</u> pathway.		
estimation of blood		estimation of blood	Importance:		
glucose		glucose	1. Synthesis of mucopolysaccharides		
			2. Conjugates with -Toxic substances - Drugs -		
			hormones -bilirubin & converts them into		
			soluble non-toxic substance; a glucuronide,		
			which is excreted in urine		

B. Amino sugars:

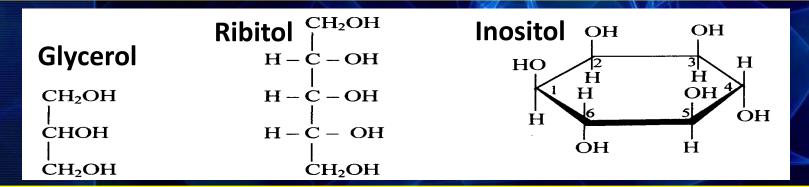
- Replacing the hydroxyl group of carbon 2 by an amino group
- Amino sugars are constituents of glycoprotein and GAGs. eg. Glucosamine – galactosamine - mannosamine


α, D-Glucosamine

 α , D-Galactosamine α , D-Mannosamine

C. Amino sugar acids:

- They are condensation of aminosugars & some acids
- They are occurring in glycoproteins
- eg. Neuraminic acid & N-acetyl neuraminic acid (NANA or sialic acid)



D. Sugar alcohols:

 Produces by reduction of monosaccharides to the corresponding alcohols (hydrogenation of aldoses & ketoses)

e.g. -CHO
$$\longrightarrow$$
 CH₂OH -C=O \longrightarrow CHOH

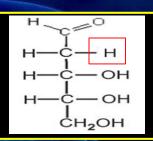
Inositol: is called myoinositol or muscle sugar

Enters in phospholipids

Present in liver, heart and muscle

In plant, phytic acid (inositol hexaphosphate) inhibits the absorption of Ca⁺², Mg⁺², Mn⁺² & Fe⁺² from intestine → phytate salts

Example	Glycerol	Ribitol	Xylitol
	CH-OH	CH₂OH	CH₂OH
	1	н—с—он	н_с—он
	н—с—он	н—с—он	но—с—н
		н—с—он	н-ф-он
	CH₂OH	ĊH₂OH	CH₂OH
Importance	Glyceraldehyde or	Ribose → ribitol which	L-Xylulose → xylitol
·	dihydroxyacetone phosphate \rightarrow	is a constituent of	which is artificial
	glycerol which is :	riboflavin (vitamin B2)	sweetener.
	 Component of triacylglycerol 		
	& phospholipids (Lipid)		
	2- Used in pharmaceuticals as a		
	base &drug (glyceryl		
	trinitrate)		



Example	Sorbitol	Mannitol	Galactitol
	CH₂OH	CH₂OH	CH₂OH
	н—с—он	но—с—н	н—с—он
	но-с-н	но-с-н	но-с-н
	н—¢—он	н—¢—он	но¢н
	н-с-он	н—ç—он	н-с-он
	CH₂OH	CH₂OH	сн₂он
Importance	D-Glucose or D-fructose	D-mannose or D-	D-galactose → galactitol
	→Sorbitol	fructose → mannitol	Galactitol accumulates in
	Sorbitol accumulates in ocular	which is used as an	ocular lens in
	lens in diabetes leading to	o <u>smotic diuretic</u> and	galactosemia leading to
	cataract (lens opacity)	reduce intracranial	cataract (lens opacity)
	H CH2OH	tension in brain tumors	
		and reduce intraocular	
	н—с—он н—с—он	pressure in acute	
	н—с—он п—оп Сн ₂ он СН ₂ ОН	glaucoma	

E. Deoxysugars:

 Replacement of the hydroxyl group of carbon 2 by hydrogen atom eg. Deoxyribose in DNA

Glycosidic bond & glycosides

Glycosidic bond:

- Form between a carbohydrate & another compound
- Between hydroxyl group of anomeric carbon of monosaccharide
 & another compound (monosaccharide → disaccharide or non-CHO aglycon → glycoside)

eg. of glycosides:

- Glycolipids, glycoprotein,
- Sugar nucleotides (ATP & GTP): aglycon is purine and pyrimidine
- Cardiac glycosides: aglycon is steroid nucleus
 (Digitalis is a cardiac glycoside used in treatment of heart failure)
- Phlorizin (blocks active transport of glucose by the kidney)

